Biophysical Chemistry for Life Scientists

Biotechnology Research Center, National Taiwan UniversityFall 2000

Instructor: Sunney I. Chan

Vice President & Distinguished Research Fellow

Institute of Chemistry, Academia Sinica

Telephone: 2-2789-9402

E-mail:

Problem Set 6

Due Monday, December 4, 2000

- (1) Calculate the electric field (\mathbf{E}^*) and the electrostatic potential (Φ) at a distance r from a charge q_B . What is the direction of the electric field? Recall that $\mathbf{F} = q_A \mathbf{E}^*$ and $\mathbf{U}(\mathbf{r}) = q_A \Phi(\mathbf{r})$, where q_A is a test charge. **Bold symbols denote vector quantities.**
- (2)Calculate the potential energy of interaction between Na $^+$ and Cl $^-$ separated by a distance of 10 Å (1 nm) (a) in a vacuum; and in (b) in water at 37 °C (dielectric constant $\epsilon = 74.2$).. Do the calculations in both SI and cgs units.
- (3) Calculate the ionic strength of a 0.01 \underline{m} solution of Fe₂(SO₄)₃. Estimate the mean activity coefficient of this solute at 37 °C according to Debye-Huckel theory.
- (4)Calculate the ionic strength of a solution containing 0.1 \underline{m} NaCl and 0.01 \underline{m} MgCl₂.
- (5) From Coulomb's Law and the reversible work required to move two oppositely charged ions from infinite separation to a distance r apart, obtain an expression for the free energy of interaction between a pair of ions in solution. Also, obtain an expression for the electrostatic entropy and enthalpy, i.e., the entropy and enthalpy of interaction.